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type seen in Au22Mn6 (Hiraga et aL, 1982). In the 
present case, there is a sliding offset of Mn-column 
positions as indicated, for example, by the arrows in 
Fig. 7(b) and the width of Dla along the long-period 
axis is different. Careful observation of these images 
enables a schematic model for this lattice 'side-step' 
to be obtained, as drawn in Fig. 7(c) where the 
difference in brightness of spots is indicated by the 
lined, half-filled or solid circles (and the regions of 
D la type are shown in screen-tone). The structure 
model of Au22Mn6 is also shown in Fig. 7(d) for 
comparison. Some apparent nearest-neighbour Mn- 
Mn pairs, the brightness of which is lower than that 
of other parts, are visible at the side-step. However, 
no nearest-neighbour Mn-Mn pairs are known to 
exist in this alloy. Moreover, the recorded image 
comes from the projection of the structure along the 
incident-beam direction. Thus, it can be concluded 
that the occupation probability of the Mn atoms in 
the columns is less than unity in order to avoid true 
nearest-neighbour Mn-Mn pairs, and this causes the 
lower contrast of the pairs, as discussed for the 'super- 
structure' image condition (Shindo, Hiraga & 
Hirabayashi, 1984). It is not possible to distinguish 
where the Mn atoms are located in the columns, 
whether there is perfect order along the tilt boundary 
or if the Mn atoms occupy the columns randomly 
along the beam direction. It should be noted that the 
superstructure shown in Fig. 7(c), which is effectively 
AulnMn4 ,  has not previously been reported. 
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Abstract 

A complete analysis of the modulated structure of 
NbTe4 is presented, using the newly developed for- 
malism of de Wolff [Acta Cryst. (1974). A30, 777-785] 
and Yamamoto [Acta Cryst. (1982). A38, 87-92]. The 
diffraction pattern was measured at room tem- 
perature, including first-order and second-order satel- 
lites. The superspace group of the complete structure 
is |'l/Pa/mcc,, 1 T I 1" The final R ~  value is 0.095 (0.044 for 

0108-7681/86/010043-08501.50 

main reflections only), for a total of 3894 unique 
reflections (923 main reflections). The average struc- 
ture found previously [Selte & Kjekshus (1964). Acta 
Chem. Scand. 18, 690-696] is confirmed. In addition, 
the modulation wave is determined; it resides mainly 
on the Nb atoms, which have an amplitude of 0.33/~. 
The results show that the displacements are correlated 
in such a way as to keep the Te-Te bonding distance 
constant and to minimize the variation in the shortest 
Nb-Te distance. It is found possible to refine at least 
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up to the fifth harmonic in the modulation wave. 
However, the values found for higher harmonics do 
not describe the real modulation wave, but assume 
values to account for the variation in intensities due 
to experimental errors. Therefore, only the ampli- 
tudes up to the second order are considered to be 
reliable. 

I. Introduction 

In the last decades there has been growing interest 
in compounds with quasi-one-dimensional proper- 
ties. Among these there is the class of organic conduc- 
tors (Proceedings of the International Conference on 
One-Dimensional Conductors, 1983) which have an 
electron band confined almost to one direction in the 
crystal. Another class is that of the transition-metal 
tri- and tetrachalcogenides ( Proceedings, 1983), which 
have a charge-density-wave (CDW) state. They also 
exhibit unique electronic properties along the direc- 
tions of the CDW. 

One of the latter compounds is NbTe4, which is 
discussed here. 

Selte & Kjekshus (1964) determined the average 
structure of NbTe4. Their subcell is tetragonal with 
a = b = 6.499 and c = 6.837/~. Additional spots in the 
diffraction pattern were attributed to a 2a x2b  x3c  
superstructure. Later work (Mahy, Wiegers, van 
Landuyt & Amelinckx, 1984; Boswell, Prodan & 
Brandon, 1983; B/Shm &von Schnering, 1983) showed 
that there is not an exact tripling of the c axis. A 
careful analysis of X-ray data (B/Shm & von Schner- 
ing, 1983; Boswell & Prodan, 1984) and of electron 
diffraction photographs (Mahy et al., 1984) showed 
that the satellite spots appear at ½a* +½b* +0-309c*, 
thus indicating a modulation which is incommensur- 
ate with the periodicity of the average structure. 

In this paper we present the result of a full X-ray 
analysis of the incommensurately modulated struc- 
ture of NbTe4, using the method developed by de 
Wolff (1974) and Yamamoto (1982a). In particular, 
the use of the so-called superspace groups (de Wolff, 
Janssen & Janner, 1981; Janner, Janssen & de Wolff, 
1983) will be shown to be very powerful in determin- 
ing the nature of the modulation wave. 

2. Description of the diffraction pattern 

In the reflection pattern of NbTe4 one can distinguish 
two classes of reflections: a group of strong reflections 
and a group of weaker reflections. The reflections of 
the first group are at the nodes of the reciprocal lattice 
A*, spanned by the vectors a*, b* and c*, as was also 
used by Selte & Kjekshus (1964). The corresponding 
direct lattice gives the periodicity of the average struc- 
ture. With use of the reciprocal lattice and a fourth 
vector q' = ½a* + ½b* + 0.309c*, all diffraction vectors 
can be described as an integral linear combination 

of these four vectors, 

S = ha* + kb* +/c* + mq', (1) 

where h, k, I and m are integers. 
Diffraction spots with m = 0 are the so-called main 

reflections. From these the average structure can be 
determined. The reflections with m ~ 0 are the Imlth- 
order satellites. The combination of main reflections 
and satellites enables one to determine the modulated 
structure. 

There are essentially two ways along which one 
can proceed to determine such a structure. Commonly 
used is the method in which a larger unit cell is 
chosen, in such a way that all reflections can be 
described with integer coefficients with respect to the 
new reciprocal base-vectors. Consequently a structure 
determination can be accomplished using the usual 
formulas for X-ray analysis. The difficulty now arises 
that the parameters of crystallographically indepen- 
dent atoms often become strongly correlated. There- 
fore some model has to be built to constrain the 
parameters to each other. A second difficulty of this 
supercell approach is that it is only possible exactly 
when the components of the modulation wave are 
rational numbers. In the case of NbTe4 the c* com- 
ponent of the modulation wavevector is irrational (or, 
a fraction with a very large denominator),  so there is 
no true periodicity of NbTe4 along this axis. 

A more rigorous and more favourable description 
for an incommensurately modulated crystal is to 
describe it in the so-called modulated-crystal 
approach.? The reflections are then described accord- 
ing to (1). However, a modified form for the structure 
factor has to be used (de Wolff, 1974; Yamamoto, 
1982a). The problem of dependent parameters does 
not now arise. Up to the ruth-order harmonics of the 
modulation function can be determined, when the 
satellites up to the mth order are measured (van der 
Aalst, den Hollander, Peterse & de Wolff, 1976). 

3. Experimental 

The preparation of the crystals is described elsewhere 
(Mahy et al., 1984). 

Weissenberg photographs were taken with mono- 
chromatized Cu Kal radiation, in order to have a 
preliminary scan of the symmetry and crystallo- 
graphic data. The photographs clearly show the pres- 
ence of satellite spots, with a wavevector of 
(½,½,0.309). 

The intensity data, necessary for the refinement, 
were collected on an Enraf-Nonius CAD-4 four- 
circle diffractometer with monochromatized Mo Ka 

i" Frequently, the modulated-crystal formalism can also be of 
advantage for the description of commensurately modulated crys- 
tals [see Bronsema & Mahy (1985), Bronsema, van Smaalen & 
Mahy (1985) and van Smaalen, Bronsema & Wiegers (1985)]. 
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Table 1. The number of  measured inequivalent 
reflections 

Excluding 
Observed less-than's* 

Main reflections 972 923 
First-order satellites 1846 1598 
Second-order satellites 1935 1373 
Total 4753 3894 

* Less-than's are defined by Fobs<3~p 

Table 2. Lattice parameters of  the average structure 
( tetragonal lattice) 

Selte & Kjekshus (1964) and Boswell et  al. (1983) do not report 
standard deviations. 

Selte & Kjekshus Boswell et  al. 
This work (1964) (1983) 

a = b (/~,) 6.499 (2) 6.499 6.496 
c (/~) 6.837 (2) 6.837 6.823 

radiation, using the 0-20 scan technique. In order to 
measure the satellite reflections a modified CAD-4 
program (de Boer & Duisenberg, 1984) was used, 
which was able to measure reflections with non- 
integral indices. 0max = 55°; the hkl indices are in the 
range 0 to 15. Up to second-order satellites were 
measured; the third- and higher-order satellites were 
too weak to be observed. A crystal approximately 
0.2x0.1 x0.1 mm was used. A total of 14400 reflec- 
tions (main reflections, first-order and second-order 
satellites) were measured. Corrections were made for 
the Lorentz-polarization effect and for absorption 
( /x=224.1cm -1) (Spek, 1983). Finally, for the 
equivalent reflections the average value was taken 
and all systematic extinctions were removed. The 
number of inequivalent reflections and the number 
of reflections excluding those with Fob s < 3o'~ (less- 
than's) are given in Table 1. Main reflections 211,121 
and 112 were used as standards: maximum variation 
18%, between the several series measured over a 
period of 3 weeks. 

4. Symmetry 

The space group of the average structure is deter- 
mined to be P4/mcc  with an inversion centre, or P4cc 
without, in agreement with Selte & Kjekshus (1964). 
Boswell et al. (1983) proposed a group of lower 
symmetry, P422. Their argument was based on the 
fact that they observed some reflections which should 
be absent in P4cc. The presence of these reflections 
is probably due to the half-lambda effect. This is 
strongly suggested by the fact that we did observe 
these reflections on the diffractometer (using Mo K s  
radiation), while we did not observe them on the 

(hk  t+l) ( h . l  k+l t+ l )  

-- 

q '  

(h k t) (h .1 k.1 t ) 

Fig. 1. The two possible choices of the modulation wavevector. 

photographs (obtained with Cu Ka radiation), even 
after long exposure times. Selte & Kjekshus (1964) 
used Cu K s  radiation too, whereas Boswell et al. 
(1983) used Mo Kce radiation. 

The lattice parameters of the average structure were 
determined from 25 high-order reflections and are 
summarized in Table 2. 

All satellites can be described with one modulation 
wavevector, q' = ½a* + ½b* + 0.309c*. Consideration of 
the whole diffraction pattern (both satellites and main 
reflections) leads to the four-dimensional Bravais 
class WP4/7~"~ (No. 20) of the classification of de 
Wolff et al. (1981). The possible space groups can 
then be obtained from the systematically extinct 
reflections. To arrive at a space group which is present 
in the tables of de Wolff et al. (1981), and not at one 
which is only equivalent to a space group in these 
tables, it is necessary to choose another modulation 
wavevector (de Wolff, 1984). The proper choice is: 

q = a* + b* + c * - q '  = ½a* +½b* +0.691c*. (2) 

The effect of this transformation is that a first-order 
satellite indexed with (hkl +1) with respect to q '=  
(½½0-309), is indexed with ( h + l  k + l  l+1  -1 )  with 
respect to the new modulation wavevector q=  
(½½0.691) (see Fig. 1). By this transformation, the 
second-order satellites are also assigned to another 
main reflection. One can refer to these different 
choices of modulation wavevector as the choice of 
different settings of the (four-dimensional) lattice. 

In order to analyse the systematic extinctions, it is 
necessary to transform the subcell in such a way that 
only the irrational components of the modulation 
wavevector remain (de Wolff et al., 1981). The 
required transformation is (see Fig. 2): 

A = ( a + b )  

B= ( b - a )  
(3) 

C = c  

qi = (0,  0, 0.691) 

The indices of the reflections hklm are transformed 
accordingly to HKLM.  The systematic extinctions 
are: L--2n,  both for the OKLM and the H H L M  
reflections. This indicates the presence of two distinct 
glide planes (~). The latter symbol means a c glide in 
ordinary three-dimensional (3D) space, accompanied 
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by the identity transform in the fourth dimension. 
The only two possible superspace groups are then 

I , I z P 4 /  m_ cc  |'I/rPacc" 111 and its centrosymmetric counterpart ,, 1 ~ 1~. 

5. Determination of the structure 

The space group of the average structure is P4/mcc 
or P4cc. In P4/mcc Te lies at special position 8(m) 
at (x, y, 0) and Nb at special position 2(a) at (0 0 ¼). 
The refinement was first performed in the centro- 
symmetric space group, starting from the values 
determined by Selte & Kjekshus (1964). Using the 
main reflections excluding less-than's an R ~  factor 
of 0.100 was obtained. The atomic scattering 
factors are taken from International Tables for X-ray 
Crystallography (1974). The definitions used here 
a re  RF = Y II Fobsl- IFca~cll/Y IFobsl and RF ~= 
[Y~ (IFobsl-lFca~d)2/Y~ IFod2] "2. The refinements are 
performed by minimizing RF~. All refinements were 
performed using unit weights. Inspection of the struc- 
ture factor list showed that eight strong low-order 
reflections were heavily affected by extinction. There- 
fore, one additional parameter describing isotropic 
secondary extinction (Becker & Coppens, 1974; 
Yamamoto, 1982b) was used in the refinement. The 
RF~ factor dropped to a value of 0.065, with an 
extinction parameter of 6 x 10 -5. The large drop in R 
factor, on addition of only one parameter, indicates 
that secondary extinction is indeed an important 
effect here. The final parameters are given in Table 
3 (for all parameters A/tr = 0).* The refinement was 
also performed using the restrictions imposed by the 
noncentrosymmetric space group P4cc. To fix the 
origin, the z parameter of Te was kept at zero. The 
R factor found for the noncentrosymmetric parameter 
set was not lower than that for the centrosymmetric 

* Lists of structure factors have been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
42427 (40 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH1 2HU, England. 

0 0 ~ - ~  000o 

0 ° ® ~  0 0 
Fig. 2. Projection of the average structure along c. The two different 

unit cells used in this paper [equation (3)] are shown. Large 
circles denote Te atoms, small circles denote Nb atoms. [See 
equation (3) and Fig. 2 for the relation between (A, B, C) and 
(a, b, c).] 

Table 3. Final parameters for the average structure 
after refinement on main reflections only 

The temperature factor has the form exp( -W),  with W= 
~i Yv h~hjflu" The e.s.d.'s are given in parentheses. All values refer 
to the larger (A, B, C) unit cell [equation (3)]. 

Nb x 0. Te x 0.23599 (9) 
y 0- y 0"09193 (8) 

i z a z 0" 
/311=/322 0"00116(7) /311 0"00374(7) 

1333 0.02891 (93) /322 0"00189 (5) 
/333 0"00389 (9) 
/3t2 -0"00109 (4) 

one. From this we conclude that, as far as the average 
structure is concerned, there is a centre of symmetry. 

For the refinement of the average structure both 
the X R A Y  system (Stewart, 1976) and the least- 
squares program REMOS (Yamamoto, 1982b) lead 
to the same results. 

The average structure contains two independent 
atoms in the unit cell. In the modulated structure the 
additional parameters are the amplitudes of the 
modulation wave belonging to these two atoms. In 
principle one has to consider both occupation modu- 
lation and displacive modulation. The stoichiometry 
and the dependence of the satellite intensities on HKL 
strongly indicates that only a displacive modulation 
is present. Consequently, it is the only kind of modu- 
lation considered here. For a displacive modulation, 
the modulation function of each atom can be 
described as, 

up- = u" (:~4), (4) 

w h e r e  3~" 4 = q .  r~ is the fourth coordinate, r~ = n + x~ 
is the position of the /z th  atom in the nth unit cell in 
the average structure and up- is its displacement in 
the real structure. 

A symmetry operator of the modulated structure 
transforms the 3D space coordinates according to a 
3D point-group operator R and a 3D translation a-. 
This transformation is accompanied by a transforma- 
tion of the fourth coordinate as follows: x4--> ex4+ z4, 
where z4 is the fourth translation component and 
e = + 1 according to Rq = +q. For a particular super- 
symmetry group a notation for such an operator is 
(R[¢), where ~" stands for the four translation com- 
ponents and the value of e is understood to follow 
from Rq = eq. 

Now, let Kp- be the group of symmetry operators 
(R[z) which leave the position of the /ztt- atom 
invariant. Then, the symmetry restrictions on the com- 
ponents of the modulation wave are obtained from 

UP- (X4) -7- ( R  I ' / ' )UP'(X,) ( 5 )  

with (R I r)~ K,,. Only the generators of Kp- have to 
be considered here. 

In the centrosymmetric point group, Nb is left 
invariant by (C410000) and (C2100~0). The latter 
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Table 4. Symmetry restrictions on the components 
of  the modulation function 

U("~4) = U l ( X 4 ) A  + u2( X 4 ) B  "at- U3( ~ ' 4 ) C  

D e p i c t e d  is w h e t h e r  a pa r t i cu l a r  c o m p o n e n t  is an  even  func t ion ,  
an  o d d  func t i on ,  has  to be  zero ,  o r  is no t  restr icted.  

N b  Te 

ul zero even 
W P 4 / m  cc ~ ~ u2 zero even 

u 3 odd odd 

u I zero none 
w P4cc  

111 112 z e r o  n o n e  

u3 none none 

operator is only present in the centrosymmetric group. 
Te lies only on a special position in the centrosym- 
metric group. It is then left invariant by (ml0000), 
the horizontal mirror plane. From these operators the 
symmetry restrictions on the functions describing the 
modulation wave were obtained. They are summar- 
ized in Table 4. 

With the restrictions on the components of the 
modulation function thus obtained, the refinement of 
the structure could be performed. For the refinement 
a least-squares program written by Yamamoto 
(1982b) was used. The parameters in the refinement 
were the average position parameters, the com- 
ponents of the temperature tensor, the Fourier ampli- 
tudes of the modulation wave and the extinction 
parameter. The Fourier amplitudes are defined by, 

oo 

u~($4) = )-'. [ A ~  cos (27rnx4) 
n = l  

+ B ~  sin (27rn .~4)  ] (6) 

(a  = x, y, z), where A,% and B~,~ are the amplitudes 
of the nth-order Fourier component of the /z th  atom. 
Note that A refers to the even component and B 
refers to the odd component of the modulation wave. 

As shown by van der Aalst et al. (1976) the 
intensities of the nth-order satellites are dominated 
by the Fourier components up to the nth order. There- 
fore, the most feasible procedure to determine the 
Fourier amplitudes is to start the refinement with the 
first harmonic and then to add the other harmonics 
consecutively. First an attempt was made to test 
whether the centre of symmetry is absent or not. To 
this end, three refinements were performed using the 
main reflections and the first-order satellites. Initially 
the first-order harmonics were refined in the cen- 
trosymmetric space group, starting from the par- 
ameters of the average structure and a small offset of 
one of the modulation parameters. A smooth conver- 
gence was obtained to the final parameters in eight 
least-squares cycles. Using this result, a refinement 
was performed in the centrosymmetric space group 
of the harmonics up to the second order and a 
refinement was carried out in the noncentrosymmetric 
space group of the harmonics up to the first order. 

Table 5. R values for different centrosymmetric and 
noncentrosymmetric refinements, showing the effect of  

a centre of symmetry 

( a )  R e f i n e m e n t  o n  m a i n  ref lec t ions  and  f i rs t -order  satell i tes 

1, c* 2, c 1, nc 

t R  F 0 0-054 0"039 0.042 
I 0"127 0"072 0"100 

overall 0.086 0.054 0.068 
R ~  0 0.055 0.045 0.046 

1 0.133 0.080 0.109 
overall 0.080 0.055 0.066 

Number of  14 18 20 
parameters 

(b)  R e f i n e m e n t  on  m a i n  ref lect ions  and  first- and  s e c o n d - o r d e r  
satell i tes 

2, c 3, c 2, nc 

R F 0 0.044 0.046 0.040 
1 0-102 0.077 0.091 
2 0.319 0.229 0.242 

overall 0.106 0.084 0.090 
RF 2 0 0"047 0-050 0-044 

1 0-110 0-086 0"097 
2 0"378 0"262 0"295 

overall 0.095 0.077 0.080 
Number of  18 24 24 

parameters 

* The highest harmonic used in the refinement is given, and also whether 
the centrosymmetric (c) or noncentrosymmetric (nc) group is used. 

t For the definition of  RF and Rv 2 see text. 

In the latter refinement the z parameter of the average 
position of Te was fixed as choice of origin and the 
cosine part, Alz, of the modulation wave of Nb was 
kept at zero to fix the phase of the modulation wave. 
The resulting R ~  values are displayed in Table 5(a). 
This shows that the addition of the second harmonic 
in the centrosymmetric space group gives a larger 
drop in R factor than does going from the centrosym- 
metric to the noncentrosymmetric space group, 
whereas the latter refers to more parameters. The 
same effect is observed for refinement on all reflec- 
tions (Table 5b). From this we conclude that the 
structure is centrosymmetric. 

After establishing the presence of a centre of sym- 
metry, a series of refinements of the parameters up 
to the nth-order harmonics, for n = 2, 3, 4, 5, using 
both the first- and second-order satellites and the 
main reflections, was carried out. The resulting R 
values for all these refinements are given in Table 6. 
It seems that one can go on and on adding modula- 
tion-wave harmonics. However, we think that the 
higher harmonics are not meaningful. The first reason 
is that the addition of each harmonic introduces four 
more parameters, whereas it appears from Table 6 
that on going to higher order the drop in R factor 
becomes less on addition of one more harmonic. 
Secondly, the contribution from a harmonic to the 
structure factor of a particular reflection will decrease 
rapidly on increasing the order of the harmonic (van 
der Aalst et al., 1976). Although no numerical estimate 
was made, it can be said safely that harmonics higher 



48 THE I N C O M M E N S U R A T E L Y  MODULATED STRUCTURE OF NbTe4 

Table 6. R values for the final results of a series of 
refinements 

* n = 2  n = 3  n = 4  n = 5  

tRF 0 0.044 0.046 0.037 0.035 
1 0.102 0.077 0.073 0.055 
2 0.319 0.229 0.166 0.165 

overall 0.106 0.084 0.070 0.061 
Rv -2 0 0.047 0.050 0.043 0.042 

1 0.110 0.086 0.083 0.067 
2 0.378 0.262 0.194 0.196 

overall 0.095 0.077 0.064 0.060 
Number of 18 22 26 30 

parameters 

* Up to the nth-order harmonic is used in the refinement. 
t For definition of Rp and Rv -2, see text. 

than the fifth do not give any appreciable contribution 
to the structure factor of reflections up to the second 
order. Finally, and even more important, an argument 
lies in the values of the Fourier amplitudes obtained 
in the different refinements (Table 7). When we look, 
for example, at the Fourier amplitudes B,z of Nb (all 
other Fourier amplitudes of Nb are zero by sym- 
metry), we see that the first and second harmonics 
are not much affected by the number of harmonics 
taken into account in the refinement. However, the 
higher harmonics change markedly on adding addi- 
tional harmonics in the refinement. The most striking 
example is the naz and Bsz amplitudes. In the 
refinement up to the fourth order the B4z amplitude 
becomes extraordinarily large. In the refinement up 
to the fifth order, it drops by a factor of ten, but now 
the Bsz amplitude becomes very large. We think that 
the effects observed here can be attributed to the 
experimental errors in the measured intensities. The 
higher harmonics do not represent a real modulation 
of the atoms in the crystal, but their numerical values 
account for the deviations in the structure factors 
from their true values. It is stressed that we do not 
intend to say that the higher harmonics cannot have 
an important contribution to the modulation function. 
Our conclusion is that the order up to which the 
satellites can be measured, limits the order up to 
which the harmonics can be determined. Because of 
these reasons, we have taken the refinement up to the 
second-order harmonic as the final result. The final 
parameters are given in Table 8. Note that all values 
refer to the larger unit cell defined in equation (3). 

One point still needs discussion: the large R factor 
of the second-order satellites. Inspection of the struc- 
ture factor list shows that the values I/tEl= 
IIFobsl-IFcalcll are not larger for the second-order 
satellites than for the first-order satellites and main 
reflections. However, the intensities of the second- 
order satellites are much lower than those of the other 
reflections, indicating that the relative errors in these 
reflections are much higher. Consequently the best fit 
of the second-order satellites will be reached at a 
higher R factor than the best fit of the other reflec- 
tions. 

Table 7. The Bnz values of the Nb amplitudes for the 
various refinements 

*n = 2  n = 3  n = 4  n = 5  

Blz -0.0390 (2) -0-0379 (1) -0-0368 (1) -0-0363 (1) 
B2z 0.0164 (2) 0.0173 (2) 0.0167 (2) 0.0169 (1) 
B3z - -  -0.0090 (2) -0.0044 (1) -0-0067 (1) 
B4z - -  - -  0-0209 (4) 0-0023 (3) 
Bsz - -  - -  - -  -0.0197 (5) 

* Up to the nth-order harmonic is used in the refinement. 
t Values quoted are given with respect to the A, B, C unit cell [equation 

(3)]. 

With the final structure model (Table 8), the 
intensities at the positions of the third-order satellites 
were calculated. They were found to be of the order 
of the differences Iz~FI in the second-order satellites, 
and are indeed 'less-than's'. 

6. Discussion 

Here the general features of the modulation wave in 
NbTe4 are described. A more extensive discussion 
and a comparison with other compounds, in par- 
ticular TaTe4, will be given elsewhere (Bronsema et 
al., 1985). 

In Figs. 3 and 4 drawings of the structure are 
presented. Fig. 3 gives the projection along A + B of 
several unit cells of the basic structure [A, B, C are 
the lattice vectors of the larger unit cell as defined in 
equation (3)]. The displacement of the atoms along 
C is represented by arrows; note that the actual dis- 
placement is one fifth of the length of the arrows. 
The phase of the modulation wave at x = y = ½ differs 
by one-half from the phase at x = y = 0. (The periodic- 
ity of the modulation wave is one by definition.) For 
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Fig. 3. Project ion o f  the s t ructure  a long A +  B. The a toms  are d rawn 
at their  average  posit ions.  The  d i sp lacement  a long C is given by 
arrows;  the actual  d i sp lacement  is one-fifth of  the length o f  the 
arrow. [See equa t ion  (3) and  Fig. 2 for  the relat ion be tween  
(A, B, C) and  (a, b, e).] 
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Table 8. Final values for the structural parameters 

Average 
structure AI* B, A 2 B 2 

Nb, z ,~ - -  0.03899 (22) - -  0.01640 (24) 
tfltt = fl22 0"00188 (4) . . . .  

fl33 0.00463 (13) . . . .  
Te x 0.23589 (4) 0.01389 (5) - -  -0.00386 (6) - -  

y 0.09195 (4) -0.00669 (5) - -  -0.00103 (6) - -  
z -- -- -0.00637 (8) -- -0.00236 (7) 

flu 0"00192 (3) . . . .  
fl22 0.00187 (3) . . . .  
fl33 0.00408 (4) . . . .  

/3t2 -0.00008 (2) . . . .  

* A,  and B, are the nth-order Fourier amplitudes as defined in equation (6). All values are with respect to the, larger, A, B, C unit cell [equation (3)]. 
5" For Nb, x=y=0;/312=/323 =/3t3 =0. For Te, ills=/323 =0. 

the first harmonic this gives a reversal of sign of the 
amplitude; for the second harmonic the amplitudes 
on different chains are the same. The result is that 
there is no simple relationship between the ampli- 
tudes of the modulation wave on different chains. 

It is well known that the average positions of 
different atoms can be related to each other by the 
symmetry of the three-dimensional space group. 
Similarly, the amplitudes of the modulation wave of 
the different atoms are related to each other by the 
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Fig. 4. Projection of  the structure along C. The displacements in 
the A B  plane are given by arrows; the actual displacement  is 
one-fifth o f  the length o f  the arrow. (a)  Unit cell with z = 0. (b) 
Unit cell with z = 1. (c) Unit  cell with z = 2. 

symmetry elements of the superspace group. Between 
each pair of Nb atoms there are four Te atoms with 
the same z coordinate, the average positions of which 
are related to each other by the fourfold axis (Fig. 3). 
The same fourfold axis requires the amplitudes of 
the modulation wave along z of these Te atoms to be 
equal; the amplitudes in the AB-plane have to be 
equal in magnitude, but have a different direction as 
given by the rotation axis (Fig. 4). Treating each such 
square of Te atoms as one entity one can decompose 
the displacements of the atoms involved into three 
modes. As a whole the square of Te atoms can have 
a displacement along C. In addition, there are the 
shrinking and expansion of the square and the rota- 
tion of the square around C. The presence of all three 
deformations is clearly visible in Figs. 3 and 4. This 
form of displacement was also suggested by B6hm & 
von Schnering (1983). However, we would like to 
emphasize here that this form is merely a result of 
the symmetry of the structure. 

In Fig. 5 we present for a number of interatomic 
distances the dependence of this distance on t. t is 
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Fig. 5. Some interatomic distances as a function of  the phase 
factor, t, in the modula t ion  wavefunction.  (1) Nb(z = ¼)-Nb(z = 
-¼), av. 3.418 A; (2) Nb(z =~)-Te(xy0) ,  av. 2.887/~,; (3) 
Te(xy0)-Te(½-  x, ½-y ,  0), av. 2.918/~; (4) Te(x, y, 0)-  
Te(y, x, ½), av. 3.897 A; (5) Te(x, y, 0)-Te07, x, 0), av. 3.291/~. 
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defined by x4 = q. r°+ t, where xa is the argument of 
the modulation wavefunction. For example, t = 0 cor- 
responds to the distances between the atoms given in 
the caption of Fig. 5. The distances between the same 
atoms, shifted n unit cells along e, is given by t = n q .  c 
(mod 1). Since the modulation is incommensurate the 
probability for a distance to be in a certain interval 
is directly proportional to the interval on the t axis 
to which it corresponds. 

First, the Nb-Nb  distance along c is considered 
(No. 1 in Fig. 5). When only the first harmonic of the 
modulation wave is present, the occurrence of a cer- 
tain lengthening of the bond is of equal probability 
as the occurrence of a shortening by the same amount. 
From Fig. 5 it appears that the effect of the second 
harmonic is to increase the probability for a 
bond shortening (60% of the bonds are shorter 
than average), while at the same time the average 
lengthening is, of course, larger than the average 
shortening. 

The shortest Nb-Te distance is between a Te at 
z = 0 and the Nb at z = ¼. From heuristic reasoning 
it is expected that there is some coherence between 
the displacements of the Nb atoms and the neighbour- 
ing Te atoms. This is also found experimentally, as 
can be deduced from Fig. 5. Fig. 5 shows that the 
lengthening of the Nb(0~) -Nb(00-~)  distance is 
accompanied by a lengthening of the Nb(0~) -  
Te(xy0) distance; for a shortening of the bonds the 
same correlation is found. In more detail, we can 
look at the values for the lengthening and shortening 
of the Nb-Te distance. The maximum lengthen- 
ing/shortening of this distance can be calculated with 
the amplitudes of Table 8, but with a maximal anti- 
phase displacement of the atoms. Then values are 
found of 0-34 and 0.32 A respectively. If a maximum 
positive correlation is assumed, the maximum 
lengthening/shortening is found to be 0.12/0.09 A. 
These latter values are also found experimentally 
(0.12/0.10 A, Fig. 5). From this it can be concluded 
that there is indeed a large coherence in the displace- 
ment of the Nb and Te atoms. 

In Fig. 5, No. 3 shows the shortest Te-Te distance. 
The average distance is 2-92 A which is only slightly 
larger than the distance in Te crystals (2-84A) 
(Cherin & Unger, 1967). This, and the fact that there 
is only a small variation in this distance (+0.04 A), 
supports the assertion of Selte & Kjekshus (1964) and 
Mahy et al. (1984) that it is a Te-Te bond. 

No. 4 is the distance between Te(xy0) and Te(yx½). 
There is hardly any variation in this distance 
(+0-015 A). Apparently, the displacements of the Te 
atoms are coupled in such a way as to keep this 
distance constant. 

Finally, No. 5 is the distance between Te(xy0) and 
Te07x0), i.e. the length of an edge of the Te square. 
The value xx/2 gives the length of the diagonal of the 
Te square. The variation in the latter distance, which 
amounts to 0.4/~, gives directly the amplitude of t h e  
shrinking/expansion mode of the Te square. Again, 
a large correlation with the variation in the Nb-Nb  
distance is found. A lengthening of this latter distance 
is accompanied by a shrinking of the Te square. 
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